Programming Aesthetics
learned from
making independent games

April 1, 2011







Braid source code

http://cloc.sourceforge.net v 1.53

C/C++ Header
C




The Witness source code

http://cloc.sourceforge.net v 1.53

C/C++ Header
C




“Industry Average : 3250 lines/year

(9oooo lines) / (3250 lines/year) =
23 years




512 MB RAM (you can’ t use it all), no VM
3 slow in-order cores
Slow file access




Certification

Program can' t crash, even with
antagonistic user

Loading time is capped




Certification

“Soak Test”

3 days * 86400 sec/day * 60 frames/sec =
15,552,000 frames

If you leak 4 bytes per frame, you' 1l fail.




game design

level design

art direction
audio direction

business development
marketing / PR
financial management




be

extremely effective

at

getting things done







Impulses to optimize

usually premature.




Most code is

not

performance-sensitive.




Optimization is

usually bad!

(Unless practiced very carefully!)




Data Structures




Data structures are about
optimization.




“using the right data structure”

is usually bad!

(Because it is premature optimization!)







Now I use arrays of records
for almost everything.




Things you might optimize

seconds per program execution (speed)
bytes per program execution (space)




Instead, optimizing

years of my life
per program implementation

(life)

This is a valid optimization parameter
you can consider just like those others!




Data structures are about
memory or speed optimization.

They are not about
life optimization

(unless you absolutely need that speed or memory).




Complicated Algorithms

are not good!




Almost all applied CS research
papers are bad

propose adding a lot of complexity
for a very marginal benefit

doesn’ t work in all cases (limited inputs, robustness)
“supported” by bogus numbers, unfair comparisons

This isn’ t fooling anyone any more...







A generalized system

is usually worse

than a specific / hardcoded one!




Adding new systems

is bad!

This should only ever be
a last resort.

deleting code >>> adding code




Straight-line code
preferred over function calls

float {
a=Db+ c; recompute () { { // Update a.
a *= f(k); float a = b + c;
a *= f£(k);

a /= g(a); a /= g(a):

rint(a) ;
P (a) return a;

print (a) ;

recompute (a) ;

print (a) ;




What is a good programmer, then?

(in this context)




gets things done quickly
gets things done robustly
makes things simple

finishes what he writes (for real)

broad knowledge of advanced
ideas and techniques

(but only uses them when genuinely helpful)




it 's easy to see benefits of an idea
developed for benefit 's sake!

very hard to measure subtle
negatives chained to this idea

(which often outweigh the benefits)




1 . 7
knowing

VS.

deeply, intuitively understanding







